2019 Applications of Mathematics

National 5 - Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2019
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

General marking principles for National Applications of Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme - this indicates why each mark is awarded
- illustrative scheme - this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) overleaf.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the

$$
\begin{aligned}
x^{2}+5 x+7 & =9 x+4 \\
-x-4 x+3 & =0 \\
(x-3)(x-1) & =0
\end{aligned}
$$

doubt and all marks awarded.
(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \bullet^{5} & \bullet^{6} \\
.5 & x=2 & x=-4 \\
.6 & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
\bullet^{6} y=5 \text { and } y=-7 \quad \cdot{ }^{6} x=-4 \text { and } y=-7
$$

You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example
$\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as
$\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$=2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$
gains full credit
- repeated error within a question, but not between questions or papers
(m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
(p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question

	Question	Generic scheme	Illustrative scheme	Max mark
1.	.	- ${ }^{1}$ Strategy: know how to calculate percentage increase - ${ }^{2}$ Strategy: identify power ${ }^{3}{ }^{3}$ Strategy: know how to calculate percentage decrease - ${ }^{4}$ Process: calculate the value of the stamp after 3 years and round to 3 significant figures	- ${ }^{1}$ Evidence of 1.07 or equivalent - $^{2} . .{ }^{2}$ or equivalent ${ }^{3}$ Evidence of 0.96 or equivalent - ${ }^{4} 1011 \cdot 18=1010$	4
Notes: 1. Correct answer with no working 2. $1011 \cdot 18$ or $1011 \cdot 17$ with no working 3. $1006 \cdot 85$ or $1006 \cdot 84$ with no working 4. When working in pounds, where rounding or truncation has taken place, working must be given to at least 2 decimal places. 5. \bullet^{3} not available $0 \cdot 96^{n}$ where $n \neq 1$				

Commonly Observed Responses:

1. For $\left(920 \times 0.93^{2}\right) \times 0.96$ leading to 764
award 3/4× $\times \checkmark \checkmark$
2. For $(920+920 \times 0.07 \times 2) \times 0.96$ leading to 1010
3. For $\left(920 \times 1.07^{2}\right) \times 1.04$ leading to 1100
4. For $\left(920 \times 0.93^{2}\right) \times 1.04$ leading to 828 award $3 / 4 \checkmark \times \checkmark \checkmark$ award $3 / 4 \checkmark \checkmark \times \checkmark$ award 2/4 $\times \checkmark \times \checkmark$

Notes:

1. Correct answer with no working award 0/4
2. \bullet^{1} can be implied by subsequent working
3. \bullet is only available for a calculation involving π and a power
4. For \bullet^{4} the correct units must be stated
5. \bullet^{4} is only available for the addition of two calculated volumes
6. Accept legitimate variations of π
7. For the final answer accept any legitimate rounding or truncation to at least 2 significant figures
8. Accept answers given in millilitres or litres

Commonly Observed Responses:

1. $3 \cdot 14 \times 1 \cdot 5^{2} \times 4+360=388 \cdot 26 \mathrm{~cm}^{3}$
award 4/4 $\checkmark \checkmark \checkmark \checkmark$
2. $\pi \times 3^{2} \times 4+360=473 \cdot 10 \mathrm{~cm}^{3}$ award $3 / 4 \times \checkmark \checkmark \checkmark$
3. $3.14 \times 3^{2} \times 4+360=473.04 \mathrm{~cm}^{3}$ award $3 / 4 \times \checkmark \checkmark \checkmark$

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 3. | (a) | \bulletCommunication: read rate of
 exchange from graph
 \bullet^{2} Process: calculate amount in
 pounds | $\bullet^{1} 0.852$ | $\mathbf{2}$ |

Notes:

1. If \bullet^{1} is incorrect \bullet^{2} is not available for candidates who truncate or round their answer to a whole number of pounds
2. \bullet^{2} is only available for candidates who multiply 250 by any value $0.83 \leq x \leq 0.86$

Commonly Observed Responses:

1. $0.85 \times 250=212.50$
2. $0.842 \times 250=210 \cdot 50$
3. $0.84 \times 250=210$
4. $0.837 \times 250=209.25$
award $1 / 2 \times \checkmark$

| (b) | \bullet^{3} Strategy/process: calculate
 exchange rate
 \bullet Communication: state date
 consistent with working | $\bullet 334 \cdot 80 \div 400=0.837$
 or
 $400 \times 0.837=334.80$
 $\bullet^{4} 9$ December | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- |

Notes:

1. Correct answer with no working
award 0/2
2. • ${ }^{4}$ is only available where calculated exchange rate is a marked point on the graph
3. Where candidates choose to multiply, \bullet^{4} is only available if the answer to one of their calculations is 334.80 and date is consistent with the exchange rate

Commonly Observed Responses:

Notes:

1. Where \bullet^{2} is not awarded, \bullet^{3} can only be awarded for a calculation of the form $\frac{a}{b} \times c(a \neq b \neq c)$, where a, b and c must either be a calculated loss, the values picked in \bullet^{1} or 100.
2. For \bullet^{3} multiplication by 100 can be implied by the answer

Commonly Observed Responses:

1. $(1210-1140) \div 1210=0.06$
award $1 / 3 \checkmark \times x$
award $1 / 3 \checkmark \times x$
2. $1210 \div 1140=1.06$

Notes:

1. \bullet^{2} is available for candidates who carry out a correct quarter circle or semi-circle calculation to find arc length or sector area
2. \bullet^{3} is not available to candidates who use area in an attempt to find perimeter including the use of $\mathrm{A}=\pi \mathrm{d}$
3. \bullet^{5} is only available for 11.49 multiplied by the appropriately rounded answer to \bullet^{4}
4. \cdot^{5} is not available if the length of railing required is a multiple of 3
5. $\cdot{ }^{5}$ is not available if there is no evidence of where the number of lengths come from
6. Accept legitimate variations of π

Commonly Observed Responses:

1. $\pi \times 10 \div 4=7 \cdot 85 \ldots$ leading to 413.64
2. $(2 \times 15 \cdot 7 \ldots+2 \times 36 \cdot 5)=104 \cdot 4 \ldots$ leading to $390 \cdot 66$
3. $124 \cdot 4 \ldots \div 3(=41 \cdot 46 \ldots)$ leading to $482 \cdot 58$
4. $(124 \cdot 4 \ldots+2 \times 1 \cdot 25) \div 3(=42 \cdot 3 \ldots)$ leading to $494 \cdot 07$
award 4/5 $\checkmark \times \checkmark \checkmark \checkmark$
award $4 / 5 \checkmark \checkmark \times \checkmark \checkmark$
award $4 / 5 \checkmark \checkmark \checkmark \times \checkmark$
award $4 / 5 \checkmark \checkmark \checkmark \times \checkmark$

	Question	Generic scheme	Illustrative scheme	Max mark
6.		- ${ }^{1}$ Process: calculate total selling price -2 Process: calculate $2 \cdot 7 \%$ of total selling price - ${ }^{3}$ Process: calculate profit	$\begin{aligned} & \bullet 1375 \times 5 \cdot 20=1950 \\ & \bullet^{2} 1950 \times 0 \cdot 027=52 \cdot 65 \\ & \bullet^{3} 1950-(1687 \cdot 50+52 \cdot 65)=209.85 \end{aligned}$	3
		Alternative Strategy - ${ }^{1}$ Process: calculate $97 \cdot 3 \%$ of one share -2 Process: calculate profit of one share - ${ }^{3}$ Process: calculate profit	- ${ }^{1} 5 \cdot 20 \times 0 \cdot 973=5 \cdot 0596$ - 2 . $5.0596-4 \cdot 50=0.5596$ - ${ }^{3} 375 \times 0.5596=209.85$	
Notes: 1. Correct answer with no working 2. In original strategy, where \bullet^{2} is not awarded, \bullet^{3} is only available if a percentage of their total selling price or the total buying price is calculated 3. In alternative strategy, where \bullet^{1} is not awarded, \bullet^{3} is only available if a percentage of the selling price or buying price is calculated 4. For candidates who use alternative strategy accept a final answer of 210				

Commonly Observed Responses:

1. 1950×1.027 leading to an answer of $315 \cdot 15$
award 2/3 $\checkmark \times \checkmark$
2. $(1950-1687 \cdot 50) \times 0.973=255 \cdot 41$ award $2 / 3 \checkmark \checkmark x$
3. $1950-1687 \cdot 50=262 \cdot 50$ award 1/3 $\checkmark \times x$

Question			Generic Scheme	Illustrative Scheme	Max mark
7.	(a)	(i)	- ${ }^{1}$ Process: calculate mean	$\begin{aligned} \bullet & (2 \cdot 5+4 \cdot 5+3 \cdot 7+3 \cdot 1+3 \cdot 8+3 \cdot 4) \\ & \div 6=3 \cdot 5 \end{aligned}$	1
Notes:					
Commonly Observed Responses:					
		(ii)	- Process: calculate $(x-\bar{x})^{2}$ -3 Strategy/process: substitute into formula - ${ }^{4}$ Process: calculate standard deviation	$\begin{aligned} & \bullet{ }^{2} 1,1,0 \cdot 04,0 \cdot 16,0 \cdot 09,0 \cdot 01 \\ & \bullet 3 \sqrt{\frac{2 \cdot 3}{6-1}} \\ & \bullet 40 \cdot 678 \ldots \end{aligned}$	3
			Alternative strategy ${ }^{2}$ Process: calculate $\sum x$ and $\sum x^{2}$ -3 Strategy/process: substitute into formula - ${ }^{4}$ Process: calculate standard deviation	- 221 and 75•8 $\cdot 3 \sqrt{\frac{75 \cdot 8-\frac{21^{2}}{6}}{6-1}}$ - $0.678 \ldots$	
Notes: 1. Correct answer with no working 2. Accept rounding or truncation to at least one decimal place for final answer 3. ${ }^{4}$ can only be awarded for a calculation involving at least two-step including a division and a square root has taken place					
Commonly Observed Responses:					
	(b)		- ${ }^{5}$ Communication: comment regarding mean - ${ }^{6}$ Communication: comment regarding standard deviation	- ${ }^{5}$ eg on average weights in 2017 are higher - ${ }^{6}$ eg the weights in 2017 are more consistent	2
Notes:					
Commonly Observed Responses:					

Question			Generic scheme					Illustrative scheme				Max mark
7.	(c)	(i)	${ }^{7}$ Communication: 4 points correct - ${ }^{8}$ Communication: all 8 points correct					- ${ }^{7}$ evidence $\bullet{ }^{8}$ evidence				2
Notes:												
			L	46	47	49	51	52	52	54	55	
			W	$2 \cdot 7$	$2 \cdot 8$	$3 \cdot 5$	$3 \cdot 7$	$3 \cdot 4$	$3 \cdot 7$	4.0	$4 \cdot 4$	

Commonly Observed Responses:

	(ii)	- ${ }^{9}$ Strategy: consistent line of best fit	$\bullet{ }^{9}$ evidence	1
Notes:				
Commonly Observed Responses:				
	(iii)	- ${ }^{10}$ Communication: answer consistent with line of best fit	- ${ }^{10}$ evidence	1

Notes:

1. When the weight falls between 2 divisions accept either number or any value in between

Commonly Observed Responses:

(d)	- ${ }^{11}$ Strategy: identify correct row in table - ${ }^{12}$ Process: calculate milk powder needed for 1 week or equivalent - ${ }^{13}$ Communication: conclusion consistent with working	- ${ }^{11}$ eg 8 (scoops) - ${ }^{12} 4 \times 8 \times 7 \times 4 \cdot 5=1008$ OR $\begin{aligned} & 4.5 \times 4 \times 8=144 \\ & 900 \div 144=6 \cdot 25 \end{aligned}$ - ${ }^{13}$ No, (as $1008 \mathrm{~g}>900 \mathrm{~g}$) OR No, (as $6 \cdot 25<7$ days)	3

Notes:

1. For \bullet^{13} the comparison has to be grams with grams, days with days or scoops with scoops

Commonly Observed Responses:

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 8. | (a) | $\bullet 1$ Strategy/process: identify number
 of gaps
 $\bullet 2$ | $\bullet 1366$ | $\mathbf{2}$ |

Notes:

Commonly Observed Responses:

1. $365 \times 2+367 \times 4=2198$
award $1 / 2 \times \checkmark$
2. $367 \times 2+367 \times 4=2202$
award $1 / 2 \times \checkmark$
3. $367 \times 4 \times 2=2936$
award $0 / 2 \times x$
4. $367 \times 4 \div 2=734$
award 0/2 xx

Notes:

1. \cdot^{3} is not available if candidate writes $295^{2}-300^{2}$
2. \bullet^{4} is available if candidate writes $295^{2}-300^{2}$ leading to $54 \cdot 5 \ldots$
3. Do not penalise candidates who truncate or round to the nearest whole number throughout

Commonly Observed Responses:

1. $\sqrt{(600+295)^{2}-300^{2}}+300=1143 \cdot 2 \ldots$
award 2/4 $\times \times \checkmark \checkmark$
2. $295^{2}+300^{2}=177025$
award $1 / 4 \times \checkmark \times \times$

Commonly Observed Responses:

(b)	- ${ }^{4}$ Communication: any 5 in correct sequence - ${ }^{5}$ Communication: remaining 4 in correct sequence		2
Notes:			
Commonly Observed Responses:			

Commonly Observed Responses:

1. $100000 \div 487 \cdot 5=205 \cdot 12 \ldots$
award 0/3 xxx

Notes:

1. ${ }^{11}$ can only be awarded for comparing 3 costs or 3 discounts

Commonly Observed Responses:

1. Shop A $£ 6$, Shop B $£ 22 \cdot 99$, Shop C $£ 22$ leading to conclusion Shop A

	uesti	Generic scheme	Illustrative scheme	Max mark
10.	(a)	- ${ }^{1}$ Process: calculate area of larger circle -2 Process: calculate area of smaller circle -3 Process: subtract areas of circles - ${ }^{4}$ Process: calculate the area of the two rectangles - ${ }^{5}$ Process: calculate overall area	$\bullet^{1} \pi \times 45 \cdot 35^{2}=6461 \cdot 07 \ldots$ $\bullet^{2} \pi \times 36 \cdot 8^{2}=4254 \cdot 47 \ldots$ - 2206-599... $\cdot{ }^{4} 8 \cdot 55 \times 84 \cdot 4 \times 2=1443 \cdot 24$ $\cdot^{5} 2206 \cdot 599 \ldots+1443 \cdot 24=3649 \cdot 839 \ldots$	5

Notes:

1. $\bullet^{1,2}$ are available for candidates who calculate the area of a semi-circle
2. For candidates who use $\pi \mathrm{d} \cdot \bullet^{2}$ is still available, \bullet^{5} is only available if it is clear that candidate used $A=\pi d$
3. \bullet^{5} is not available for candidates who double the area of a whole circle
4. $\cdot{ }^{5}$ is not available for candidates who add a semi-circle to a rectangle

Commonly Observed Responses:

1. $\pi \times 90 \cdot 7^{2}-\pi \times 36 \cdot 8^{2}+8 \cdot 55 \times 84.4 \times 2=23033 \cdot 05 \ldots$
2. $\pi \times 45 \cdot 35^{2}-\pi \times 36 \cdot 8^{2}+73 \cdot 6 \times 84 \cdot 4=8418 \cdot 43 \ldots$
3. $\pi \times 90 \cdot 7^{2}-\pi \times 73 \cdot 6^{2}+8.55 \times 84.4 \times 2=10269 \cdot 63 \ldots$
4. $\pi \times 73 \cdot 6^{2}-\pi \times 45 \cdot 35^{2}+8 \cdot 55 \times 84 \cdot 4 \times 2=12000 \cdot 05 \ldots$
5. $\pi \times 8 \cdot 55^{2}+8 \cdot 55 \times 84 \cdot 4 \times 2=1672 \cdot 89 \ldots$
6. $\pi \times 36 \cdot 8^{2}+73 \cdot 6 \times 84 \cdot 4=10466 \cdot 3 \ldots$
award $4 / 5 \times \checkmark \checkmark \checkmark \checkmark$
award $4 / 5 \checkmark \checkmark \checkmark \times \checkmark$ award $4 / 5 \times \checkmark \checkmark \checkmark \checkmark$ award $3 / 5 \checkmark \times \times \checkmark \checkmark$ award $3 / 5 \times \times \checkmark \checkmark \checkmark$ award $2 / 5 \times \checkmark \times \times \checkmark$

Questi	Generic scheme	Illustrative scheme	Max mark
(b)	- ${ }^{6}$ Strategy: know to use inverse proportion ${ }^{7}$ Process: calculate time for 1 worker - ${ }^{8}$ Process: calculate time for 7 workers	$\begin{aligned} & \bullet^{6} \text { evidence } \\ & \bullet^{7} 42 \times 5=210 \\ & \bullet^{8} 210 \div 7=30 \end{aligned}$	3

Notes:

1. Correct answer with no working
award 3/3
2. \bullet^{8} is available for dividing 42 or 210 by 7
3. For an answer of eg "it takes 12 hours less" award \bullet^{8}
4. If a candidate subtracts 5 to find the number of days, \bullet^{8} is not available

Commonly Observed Responses:

1. $5 \times 42 \div 2=105$
award 2/3 $\checkmark \checkmark x$
2. $5 \div 42 \times 7=0.83 \ldots$
award $2 / 3 \times \checkmark \checkmark$
3. $7 \div(42 \div 5)=0.83 \ldots$
award $2 / 3 \times \checkmark \checkmark$
4. $5 \div 42 \times 2=0 \cdot 238 \ldots$
5. $42 \div 5 \times 7=58.8$
6. $42 \div 5 \times 2=16.8$
award $1 / 3 \times \sqrt{x}$
award $1 / 3 \times x \checkmark$
award $0 / 3 \times x \times$

[END OF MARKING INSTRUCTIONS]

